SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY
 SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

CREDIT HOURS: 64

I. PHILOSOPHY/GOALS:

A field course designed to provide a practical evaluation of physical, chemical and biological parameters of lake and stream ecosystems.

Students will produce a depth contour map based on echo sounding conducted in the field, a physical features map and a gradient profile map.

Gill nets, trap nets and electroshockers will be utilized to assess fish species present.

Proper handling and processing of fish will be practiced, as well as the removal and preparation of structures for age determination.

The purpose, procedure and data analysis for a creel census will be considered and an effort will be made to conduct a creel census at the $S t$. Mary's Rapids.

A freshwater invertebrate collection is required.

II. STUDENT PERFORMANCE OBJECTIVES:

Upon successful completion of this course the student will:

1. Operate and where necessary, calibrate the following instruments and equipment used in aquatic surveys: oxygen meter, conductivity meter/ bridge, pH meter, HACH kit, secchi disk, Juday plankton net, kemmerer bottle, Wisconsin plankton net, sample tube, depth finder (Lowrance $\mathrm{X}-1550$), current meter, surber sampler, electrofisher.
2. Demonstrate in the field, the effective use of passive and active fish capture techniques such as gill nets, trap nets, minnow traps, seines and electrofisher.
3. Discuss the limiting factors and requirements for commonly used fish capture techniques.
4. Discuss the effect on fish physiology, the mechanics and safety concerns when operating an electrofisher.
5. Construct a physical features map, contour map and stream gradient profile for the areas of study.

II. STUDENT PERFORMANCE OBJECTIVES: (cont'd)

6. Calculate volume from the lake contour map.
7. Complete all summary forms, field collection records and scale sample envelops for the areas of study.
8. Calculate stream velocity and discharge using current meter measurements from field data.
9. Process fish by determining and recording total length, fork length, weight, sex, stomach contents, state of health and by removing scales, fin rays, cleithrum and/or otoliths for age determination.
10. Explain the objectives of conducting a creel census/sample and describe the two design types and the calculation differences for each in determining C.U.E. and harvest.
11. Conduct creel census/sample interviews with anglers and record information on interview forms and/or hand-held computers.
12. Distinguish among aquatic invertebrate families and make a collection of 25 freshwater invertebrate identified correctly to at least Family.
13. Describe various fish tagging and marking techniques and their limitations.
14. Discuss the methods of estimating fish populations and describe the signs of over-exploitation.
15. Describe the life cycles and importance of common fish parasites of Ontario.
16. Demonstrate ageing techniques using scales, fin rays and otoliths, including the preparation of these structures and the interpretation of age.
17. Outline the significance in age determination of fish and explain the procedure of back-calculations.
III. TOPICS TO BE COVERED:
18. Lake Survey.
19. Stream Survey.
20. Creel census - objectives and design.
21. Fish tagging, marking and capture.
22. Fish Parasites.
23. Fish Population Estimates and Ageing Techniques.

IV. EVALUATION METHODS:

```
Unit tests (2)30
```

Assignments/Quizzes 70
Marks are cumulative, however due to the large field component of thecourse and the fact that much of the assignments are based on datacollected in the field, students receiving a final grade of less than 60%will NOT have the opportunity to rewrite.
N.B. 1. Attendance during field trips is MANDATORY. Students missing field trips without a valid, documented reason will risk repeating the course.
2. ALL submissions must be made for a passing grade.
SUMMARY OF STUDENT EVALUATION

Aquatic Collection	Value
Lake Contour Map and Data Collection Sheet (Volume Calculation)	15
Physical Features Map	15
Remaining Lake Survey Forms	10
Gradient Profile/Stream Survey	
Forms and Discharge Calculations	10
Term Tests	15
Quizzes	30
Discretionary	5
	10
110	

Lake Assignments:
Ten percent (10% will be deducted from the total value of the assignment for every day late.

V. REQUIRED STUDENT RESOURCES:

Textbooks:
Dodge, D.P. et al 1986. Manual of Instructions, Aquatic Habitat Inventory Surveys. Fisheries Branch, Ontario Ministry of Natural Resources., pp. 159

VI. ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY:

Lehmkuhl, Dennis M., 1979, How to Know the Aquatic Insects. Wm. C. Brown Co., Publishing, Dubuque, Iowa.

McClane, A. J., 19--, Field Guide to Freshwater Fishes of North America. Holt, Rinehart and Winston.

Pennak, Robert W. 1978. Freshwater Invertebrates of the United States, Second edition. John Wiley and Sons, Toronto.
VII. SPECIAL NOTES:

Students with special needs (e.g. physical limitations, visual
impairments, hearing impairments, learning disabilities) are encouraged to discuss required accommodations confidentially with the instructor.

Your instructor reserves the right to modify the course as he/she deems necessary to meet the needs of students.

